Advanced Mathematical Statistics

I. Course Code: 1700116

Class Hour: <u>48</u> Credit: <u>3</u> Semester: <u>Spring</u> (Classroom Hour: <u>48</u>; Practice Hour: <u>0</u>)

II. Suitable specialty: Statistics

III. Prerequisites: Mathematical analysis, linear algebra, probability theory, mathematical statistics

IV. Course Description and course target

This is a core course in statistical theory for beginning graduate students in statistics, probability, and application fields where a sound understanding of statistical principles is essential. We will approximately cover most materials in Chapters 1–5 of Bickel and Doksum.

V. **Teaching method:**

Classroom lecture and in-class discussion

VI. Course content

1.	Statistical Models and goals	12 Class Hour
	1.1 Statistical Models	
	1.2 Decision theory and prediction	
	1.3 Sufficiency and data reduction	
	1.4 Exponential families	
2.	Estimation Methods	12 Class Hour
	2.1 Basic heuristics of estimation	
	2.2 Method of moments	
	2.3 MLE	
	2.4 Computational issues	
3.	Measures of performance	12 Class Hour
	3.1 Bayes procedures and Minimax procedures	
	3.2 Unbiased estimation and UMVUE	
	3.3 Asymptotic theory and consistency	
	3.4 Asymptotic efficiency of MLEs and other criteria	
4.	Testing and confidence regions	8 Class Hour
	4.1 Hypothesis testing: the NP lemma and UMPT	
	4.2 Likelihood ratio tests and Bayes tests	
	4.3 Confidence set and Bayesian credible sets	
5.	Discussion part: Statistical modeling in modern era	4 Class Hour

VII. Evaluation and exams

English problems. The final score is made up of homework(40%), presentation (30%), and final exam (30%).

VIII. References

Peter J. Bickel and Kjell A. Doksum (2015) Mathematical Statistics: Basic Ideas and Selected Topics. Vol 1. Second Edition, Springer

Jun Shao (2003) . Mathematical statistics, Second Edition, Springer. Kotz,S.,and Johnson,N.L.(1997). Breakthroughs in statistics, Volume I,Springer

Lehmann, E.L., and Casella, G. (2003). Theory of Point Estimation, Second Edition, Springer

IX. Syllabus written by:

Jun Yu, assistant professor in the school of mathematics and statistics, served as a visiting scholar at the department of statistics of the University of Georgia during 2019.12—2020.12.